# A brief over-view of Fixed Point Theory Theory and Applications of Fixed Points

Abdullah Naeem Malik

CIIT

April 17, 2014

Abdullah (CIIT)

Theory and Applications of Fixed Points

April 17, 2014 1 / 18

• For any function f, a fixed point is a point x such that f(x) = x

- For any function f, a fixed point is a point x such that f(x) = x
- For instance, x = -1 in y = 3x + 2

- For any function f, a fixed point is a point x such that f(x) = x
- For instance, x = -1 in y = 3x + 2
- A fixed point may not exist, may exist but may not be unique

- For any function f, a fixed point is a point x such that f(x) = x
- For instance, x = -1 in y = 3x + 2
- A fixed point may not exist, may exist but may not be unique
- Used to find roots of an equation as follows: write out f(x) in the form g (x) = x or by finding fixed points of g (x) = x + f (x)

# Graphical Illustrations

$$f(x) = x^2 + 2x + 1$$



# Graphical Illustrations

$$f(x) = x^2 - 2x + 1$$



Abdullah (CIIT)

Theory and Applications of Fixed Points

April 17, 2014 4 / 18

# Definitions

- ∢ ∃ ▶

### Definitions

• f is **Lipschitzian** if  $\exists$  Lipschitzian constant  $\alpha$  such that

 $d(f(x), f(y)) \leq \alpha d(x, y)$ 

### Definitions

• f is **Lipschitzian** if  $\exists$  Lipschitzian constant  $\alpha$  such that

$$d(f(x), f(y)) \leq \alpha d(x, y)$$

• *f* is **non-expansive** if  $\alpha = 1$ 

### Definitions

• f is **Lipschitzian** if  $\exists$  Lipschitzian constant  $\alpha$  such that

$$d(f(x), f(y)) \leq \alpha d(x, y)$$

- f is **non-expansive** if  $\alpha = 1$
- f is a contractive if d(f(x), f(y)) < d(x, y)

### Definitions

• f is **Lipschitzian** if  $\exists$  Lipschitzian constant  $\alpha$  such that

$$d(f(x), f(y)) \leq \alpha d(x, y)$$

- f is **non-expansive** if  $\alpha = 1$
- f is a contractive if d(f(x), f(y)) < d(x, y)
- f is a contraction if  $\alpha \in (0, 1)$

# f (x) = 2x is Lipschitzian for α = 2 under d (x, y) = |x - y| but not non-expansive

- f (x) = 2x is Lipschitzian for α = 2 under d (x, y) = |x − y| but not non-expansive
- f(x) = x is nonexpansive but not contractive since d(f(x), f(y)) = d(x, y)

- f (x) = 2x is Lipschitzian for α = 2 under d (x, y) = |x y| but not non-expansive
- f(x) = x is nonexpansive but not contractive since d(f(x), f(y)) = d(x, y)
- For X = (1,∞), f (x) = x + 1/x is contractive but not a contraction since d (f (x), f (y)) =
   |(x - y) + (1/x - 1/y)|
   = |x - y| |1 - 1/xy| < |x - y|</li>

### Theorem

Every Lipschitz mapping is uniformly cts.

### Theorem

Every Lipschitz mapping is uniformly cts.

### Proof.

Let  $\epsilon > 0$ . Choose  $\delta = \epsilon / \alpha$ . Then,  $d(x, y) < \delta \implies d(f(x), f(y)) \le \alpha d(x, y) < \epsilon$ 

### Theorem

Every Lipschitz mapping is uniformly cts.

### Proof.

Let  $\epsilon > 0$ . Choose  $\delta = \epsilon / \alpha$ . Then,  $d(x, y) < \delta \implies d(f(x), f(y)) \le \alpha d(x, y) < \epsilon$ 

### Theorem

For  $X = \mathbb{R}$  and usual metric  $d, g : \mathbb{R} \longrightarrow \mathbb{R}$  is a contraction  $\iff |g'(x)| \le \alpha < 1$  for continuous g.

### Theorem

Every Lipschitz mapping is uniformly cts.

### Proof.

Let  $\epsilon > 0$ . Choose  $\delta = \epsilon / \alpha$ . Then,  $d(x, y) < \delta \implies d(f(x), f(y)) \le \alpha d(x, y) < \epsilon$ 

### Theorem

For 
$$X = \mathbb{R}$$
 and usual metric  $d, g : \mathbb{R} \longrightarrow \mathbb{R}$  is a contraction  $\iff |g'(x)| \le \alpha < 1$  for continuous  $g$ .

### Proof.

$$( \Leftarrow ) \frac{g(x) - g(y)}{x - y} = g'(t) \text{ for } t \in (x - y - \delta, x - y + \delta) \text{ from}$$
  
MVT  $\Longrightarrow |g(x) - g(y)| \le \alpha |x - y|$   
 $( \Longrightarrow ) |g(x + h) - g(x)| \le \alpha |h|$ 

### Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

### Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

### Proof sketch.

Construct sequence  $x_{n+1} = T(x_n)$  after taking any  $x_0$ 

### Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

### Proof sketch.

Construct sequence  $x_{n+1} = T(x_n)$  after taking any  $x_0$ 

### Corollary (Prior estimate)

$$d(x_m, x) \leq \frac{\alpha^m}{1-\alpha} d(x_1, x_0)$$

### Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

### Proof sketch.

Construct sequence  $x_{n+1} = T(x_n)$  after taking any  $x_0$ 

### Corollary (Prior estimate)

$$d(x_m, x) \leq \frac{\alpha^m}{1-\alpha} d(x_1, x_0)$$

Corollary (Posterior estimate)

$$d(x_m, x) \leq \frac{\alpha}{1-\alpha}(x_m, x_{m-1})$$

### Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

### Proof sketch.

Construct sequence  $x_{n+1} = T(x_n)$  after taking any  $x_0$ 

### Corollary (Prior estimate)

$$d(x_m, x) \leq \frac{\alpha^m}{1-\alpha} d(x_1, x_0)$$

### Corollary (Posterior estimate)

$$d(x_m, x) \leq \frac{\alpha}{1-\alpha}(x_m, x_{m-1})$$

### Fact

Invalid if completeness or contraction condition is taken

Abdullah (CIIT)

Theory and Applications of Fixed Points

• Newton's method is a contraction in some neighbourhood of solution  $\hat{x}$  of a twice continuously differentiable function f(x)

• Newton's method is a contraction in some neighbourhood of solution  $\hat{x}$  of a twice continuously differentiable function f(x)

Proof.  

$$g(x) = x + \frac{f(x)}{f'(x)} \implies g'(x) = 1 = f(x) f''(x) / [f'(x)]^2 \implies$$

$$\lim_{x \to \hat{x}} g'(x) = 0 \implies |g'(x)| < \epsilon$$

• Newton's method is a contraction in some neighbourhood of solution  $\hat{x}$  of a twice continuously differentiable function f(x)

### Proof.

$$g(x) = x + \frac{f(x)}{f'(x)} \implies g'(x) = 1 = f(x) f''(x) / [f'(x)]^2 \implies \lim_{x \to \hat{x}} g'(x) = 0 \implies |g'(x)| < \epsilon$$

• 
$$x_{n+1} = g(x_n) = x_n + \frac{f(x_n)}{f'(x_n)}$$

Finding roots of equations

• What if we need to find  $x = \sqrt[r]{c}$ ?

< 一型

- What if we need to find  $x = \sqrt[r]{c}$ ?
- Take  $f(x) = x^r c = 0$ .

- What if we need to find  $x = \sqrt[r]{c}$ ?
- Take  $f(x) = x^r c = 0$ .
- Apply Newton's formula to get  $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)} = g(x_n) = \frac{1}{r} \left( x_n + \frac{c}{x_n} \right).$

- What if we need to find  $x = \sqrt[r]{c}$ ?
- Take  $f(x) = x^r c = 0$ .
- Apply Newton's formula to get  $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)} = g(x_n) = \frac{1}{r} \left( x_n + \frac{c}{x_n} \right).$
- This map is contraction with  $lpha = \left| 1/r \left( 1 c/xy 
  ight) 
  ight|$



Finding solution for system of equations

### • $\mathbf{x} = A\mathbf{x} + \mathbf{b}$ for $x, b \in \mathbb{R}^n$ and $A \in M_n(\mathbb{R})$

Finding solution for system of equations

• 
$$\mathbf{x} = A\mathbf{x} + \mathbf{b}$$
 for x,  $b \in \mathbb{R}^n$  and  $A \in M_n(\mathbb{R})$ 

• Convert to  $T(x) = A\mathbf{x} + \mathbf{b}$  which is contractive when  $0 < \left| \sum_{k=1}^{n} a_{jk} \right| < 1$  for j = 1, 2, 3..., n Finding solution for system of equations

- $\mathbf{x} = A\mathbf{x} + \mathbf{b}$  for x,  $b \in \mathbb{R}^n$  and  $A \in M_n(\mathbb{R})$
- Convert to  $T(x) = A\mathbf{x} + \mathbf{b}$  which is contractive when  $0 < \left| \sum_{k=1}^{n} a_{jk} \right| < 1$  for j = 1, 2, 3..., n
- What about  $A\mathbf{x} = \mathbf{b}$ ? Convert to  $D\mathbf{x} = (D A)\mathbf{x} + b$  and use previous condition

Finding solution for differential equation

### Theorem (Picard's Theorem)

If  $|f(t,x) - f(t,y)| \le \alpha |x - y|$ , then x'(t) = f(t,x(t)) has a solution in some interval with initial value  $x(t_0) = x_0$ 

Finding solution for differential equation

### Theorem (Picard's Theorem)

If  $|f(t,x) - f(t,y)| \le \alpha |x - y|$ , then x'(t) = f(t,x(t)) has a solution in some interval with initial value  $x(t_0) = x_0$ 

### Proof sketch.

Turn IVP into 
$$T(x(t)) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$$

Finding solution for differential equation

### Theorem (Picard's Theorem)

If  $|f(t,x) - f(t,y)| \le \alpha |x - y|$ , then x'(t) = f(t,x(t)) has a solution in some interval with initial value  $x(t_0) = x_0$ 

### Proof sketch.

Turn IVP into 
$$T(x(t)) = x_0 + \int_{t_0}^t f(\tau, x(\tau)) d\tau$$

• This is also an integral equation

Finding solution for differential equation

### Theorem (Picard's Theorem)

If  $|f(t,x) - f(t,y)| \le \alpha |x - y|$ , then x'(t) = f(t,x(t)) has a solution in some interval with initial value  $x(t_0) = x_0$ 

### Proof sketch.

Turn IVP into 
$$T\left(x\left(t
ight)
ight)=x_{0}+\int\limits_{t_{0}}^{t}f\left( au,x\left( au
ight)
ight)d au$$

### This is also an integral equation

### Theorem

If 
$$f_x$$
 exists, then  $|f(t, x) - f(t, y)| \le \alpha |x - y|$ 

### Theorem

A continuous image of a compact set  $M \subseteq \mathbb{R}^n$  is compact

### Theorem

A continuous image of a compact set  $M \subseteq \mathbb{R}^n$  is compact

### Proof.

If  $x_n \longrightarrow x \in M$  and  $x_{n_k} \longrightarrow x$ , then  $f(x_{n_k}) \longrightarrow f(x)$ 

### Theorem

A continuous image of a compact set  $M \subseteq \mathbb{R}^n$  is compact

### Proof.

If 
$$x_n \longrightarrow x \in M$$
 and  $x_{n_k} \longrightarrow x$ , then  $f(x_{n_k}) \longrightarrow f(x)$ 

### Corollary

The image  $f(U) \subseteq \mathbb{R}^n$  for injective f is open for open  $U \subseteq \mathbb{R}^n$ 

### Theorem

A continuous image of a compact set  $M \subseteq \mathbb{R}^n$  is compact

### Proof.

If 
$$x_n \longrightarrow x \in M$$
 and  $x_{n_k} \longrightarrow x$ , then  $f(x_{n_k}) \longrightarrow f(x)$ 

### Corollary

The image  $f(U) \subseteq \mathbb{R}^n$  for injective f is open for open  $U \subseteq \mathbb{R}^n$ 

### Corollary

 $\boldsymbol{U}$  and  $\boldsymbol{f}\left(\boldsymbol{U}\right)$  are homeomorphic

- **(() ) ) (() )** 

### Theorem

A continuous image of a compact set  $M \subseteq \mathbb{R}^n$  is compact

### Proof.

If 
$$x_n \longrightarrow x \in M$$
 and  $x_{n_k} \longrightarrow x$ , then  $f(x_{n_k}) \longrightarrow f(x)$ 

### Corollary

The image  $f(U) \subseteq \mathbb{R}^n$  for injective f is open for open  $U \subseteq \mathbb{R}^n$ 

### Corollary

 $\boldsymbol{U}$  and  $\boldsymbol{f}\left(\boldsymbol{U}\right)$  are homeomorphic

### Corollary

A continuous injective map  $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$  does not exist for  $n \neq m$ 

Abdullah (CIIT)

Theory and Applications of Fixed Points

April 17, 2014 14 / 18

### Definition

A continuous map f from a topological space T to a subspace S is called a **retraction** if  $f(x) = x \ \forall x \in S$ 

### Example

The retract of [0, 1] is not (0, 1)

### Definition

A continuous map f from a topological space T to a subspace S is called a **retraction** if  $f(x) = x \ \forall x \in S$ 

### Example

The retract of [0, 1] is not (0, 1)

Theorem (Brouwer's Fixed Point Theorem)

Every continuous mapping  $f: \overline{B_n(0,1)} \longrightarrow \overline{B_n(0,1)}$  has a fixed point.

### Definition

A continuous map f from a topological space T to a subspace S is called a **retraction** if  $f(x) = x \ \forall x \in S$ 

### Example

The retract of [0, 1] is not (0, 1)

Theorem (Brouwer's Fixed Point Theorem)

Every continuous mapping  $f: \overline{B_n(0,1)} \longrightarrow \overline{B_n(0,1)}$  has a fixed point.

### Proof.

For n = 1,  $f(-1) \ge (-1)$  and  $f(1) \le 1$  so that g(x) = x - f(x) has a solution g(c) = 0 for  $c \in [-1, 1]$ . For arbitrary n, take  $g(x) = \alpha(x)x + (1 - \alpha(x))f(x)$  with  $g(x) \in S_n(0, 1)$ , which is well defined if f does not have a fixed point but g cannot exist

### Examples

$$f:(-1,1) \longrightarrow (-1,1)$$
 for  $f(x) = (x+1)/2$ 

### Examples

$$f:(-1,1) \longrightarrow (-1,1)$$
 for  $f(x) = (x+1)/2$ 

### Examples

$$f:B_{2}\left(0,1
ight)\longrightarrow\mathbb{R}^{2}$$
 such that  $f\left(x,y
ight)=\left(x+\sqrt{1-y^{2}},y
ight)$ 

### Examples

$$f:(-1,1)\longrightarrow (-1,1)$$
 for  $f(x)=(x+1)/2$ 

### Examples

$$f:B_{2}\left(0,1
ight)\longrightarrow\mathbb{R}^{2}$$
 such that  $f\left(x,y
ight)=\left(x+\sqrt{1-y^{2}},y
ight)$ 

### Theorem

For X,  $Y \subset \mathbb{R}^n$ ,  $g : X \longrightarrow Y$  homemorphism, then X has a fixed point  $\implies Y$  has a fixed point

### Examples

$$f:(-1,1) \longrightarrow (-1,1)$$
 for  $f(x) = (x+1)/2$ 

### Examples

$$f:B_{2}\left(0,1
ight)\longrightarrow\mathbb{R}^{2}$$
 such that  $f\left(x,y
ight)=\left(x+\sqrt{1-y^{2}},y
ight)$ 

### Theorem

For X,  $Y \subset \mathbb{R}^n$ ,  $g : X \longrightarrow Y$  homemorphism, then X has a fixed point  $\implies Y$  has a fixed point

### Proof.

For  $h: Y \longrightarrow Y$ , if  $f: X \longrightarrow X$ , then  $f = g^{-1} \circ h \circ g \implies h$  has a fixed point

≣▶ ◀ ≣▶ · 불· ∽ ९.୦ April 17, 2014 16 / 18

<ロ> (日) (日) (日) (日) (日)

### Theorem

 $\iff$  No indefinitely differentiable retraction exists from  $B_n(0,1)$  to  $S_n(0,1)$ 

### Theorem

 $\iff$  No indefinitely differentiable retraction exists from  $\overline{B_n(0,1)}$  to  $S_n(0,1)$ 

### Proof.

for n = 1,  $f : [-1, 1] \longrightarrow \{-1, 1\}$  is not differentiable If  $r : \overline{B_n(0, 1)} \longrightarrow S_n(0, 1)$  is a differentiable retraction, define  $r_1 : \overline{B_n(0, 1)} \longrightarrow \overline{B_n(0, 1)}$  such that  $r_1(x) = -r(x)$ . Then,  $r_1(x)$  has a fixed point by Brouwer's theorem but  $r_1(x) = x = -r(x)$  is then not a retraction

### Theorem

 $\Longleftrightarrow$  No indefinitely differentiable retraction exists from  $B_{n}\left(0,1\right)$  to  $S_{n}\left(0,1\right)$ 

### Proof.

for  $n = 1, f : [-1, 1] \longrightarrow \{-1, 1\}$  is not differentiable If  $r : \overline{B_n(0, 1)} \longrightarrow S_n(0, 1)$  is a differentiable retraction, define  $r_1 : \overline{B_n(0, 1)} \longrightarrow \overline{B_n(0, 1)}$  such that  $r_1(x) = -r(x)$ . Then,  $r_1(x)$  has a fixed point by Brouwer's theorem but  $r_1(x) = x = -r(x)$  is then not a retraction

### Example (Failure)

$$M^2 \ni x = (x_1, x_2, ...) \longmapsto (1 + ||x||, x_1, x_2, ...)$$

< ロト < 同ト < ヨト < ヨト

### Theorem (Schauder's fixed point theorem)

A continuous self-map on a compact, convex set in a Banach space has a fixed point