A brief over-view of Fixed Point Theory
 Theory and Applications of Fixed Points

Abdullah Naeem Malik

CIIT
April 17, 2014

What is a fixed point?

- For any function f, a fixed point is a point x such that $f(x)=x$

What is a fixed point?

- For any function f, a fixed point is a point x such that $f(x)=x$
- For instance, $x=-1$ in $y=3 x+2$

What is a fixed point?

- For any function f, a fixed point is a point x such that $f(x)=x$
- For instance, $x=-1$ in $y=3 x+2$
- A fixed point may not exist, may exist but may not be unique

What is a fixed point?

- For any function f, a fixed point is a point x such that $f(x)=x$
- For instance, $x=-1$ in $y=3 x+2$
- A fixed point may not exist, may exist but may not be unique
- Used to find roots of an equation as follows: write out $f(x)$ in the form $g(x)=x$ or by finding fixed points of $g(x)=x+f(x)$

Graphical Illustrations

$$
f(x)=x^{2}+2 x+1
$$

Graphical Illustrations

$$
f(x)=x^{2}-2 x+1
$$

Definitions

- Let (X, d) be a metric space and let $f: X \longrightarrow X$ be a function

Definitions

Definitions

- Let (X, d) be a metric space and let $f: X \longrightarrow X$ be a function

Definitions

- f is Lipschitzian if \exists Lipschitzian constant α such that

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

Definitions

- Let (X, d) be a metric space and let $f: X \longrightarrow X$ be a function

Definitions

- f is Lipschitzian if \exists Lipschitzian constant α such that

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

- f is non-expansive if $\alpha=1$

Definitions

- Let (X, d) be a metric space and let $f: X \longrightarrow X$ be a function

Definitions

- f is Lipschitzian if \exists Lipschitzian constant α such that

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

- f is non-expansive if $\alpha=1$
- f is a contractive if $d(f(x), f(y))<d(x, y)$

Definitions

- Let (X, d) be a metric space and let $f: X \longrightarrow X$ be a function

Definitions

- f is Lipschitzian if \exists Lipschitzian constant α such that

$$
d(f(x), f(y)) \leq \alpha d(x, y)
$$

- f is non-expansive if $\alpha=1$
- f is a contractive if $d(f(x), f(y))<d(x, y)$
- f is a contraction if $\alpha \in(0,1)$

Comparison of definitions

- $f(x)=2 x$ is Lipschitzian for $\alpha=2$ under $d(x, y)=|x-y|$ but not non-expansive

Comparison of definitions

- $f(x)=2 x$ is Lipschitzian for $\alpha=2$ under $d(x, y)=|x-y|$ but not non-expansive
- $f(x)=x$ is nonexpansive but not contractive since $d(f(x), f(y))=d(x, y)$

Comparison of definitions

- $f(x)=2 x$ is Lipschitzian for $\alpha=2$ under $d(x, y)=|x-y|$ but not non-expansive
- $f(x)=x$ is nonexpansive but not contractive since $d(f(x), f(y))=d(x, y)$
- For $X=(1, \infty), f(x)=x+1 / x$ is contractive but not a contraction since $d(f(x), f(y))=$

$$
\begin{aligned}
& |(x-y)+(1 / x-1 / y)| \\
& =|x-y||1-1 / x y|<|x-y|
\end{aligned}
$$

Preliminary theorems

Theorem

Every Lipschitz mapping is uniformly cts.

Preliminary theorems

Theorem

Every Lipschitz mapping is uniformly cts.

Proof.

Let $\epsilon>0$. Choose $\delta=\epsilon / \alpha$. Then,
$d(x, y)<\delta \Longrightarrow d(f(x), f(y)) \leq \alpha d(x, y)<\epsilon$

Preliminary theorems

Theorem

Every Lipschitz mapping is uniformly cts.

Proof.

Let $\epsilon>0$. Choose $\delta=\epsilon / \alpha$. Then,
$d(x, y)<\delta \Longrightarrow d(f(x), f(y)) \leq \alpha d(x, y)<\epsilon$

Theorem

For $X=\mathbb{R}$ and usual metric $d, g: \mathbb{R} \longrightarrow \mathbb{R}$ is a contraction $\Longleftrightarrow\left|g^{\prime}(x)\right| \leq \alpha<1$ for continuous g.

Preliminary theorems

Theorem

Every Lipschitz mapping is uniformly cts.

Proof.

Let $\epsilon>0$. Choose $\delta=\epsilon / \alpha$. Then, $d(x, y)<\delta \Longrightarrow d(f(x), f(y)) \leq \alpha d(x, y)<\epsilon$

Theorem

For $X=\mathbb{R}$ and usual metric $d, g: \mathbb{R} \longrightarrow \mathbb{R}$ is a contraction $\Longleftrightarrow\left|g^{\prime}(x)\right| \leq \alpha<1$ for continuous g.

Proof.

$(\Longleftarrow) \frac{g(x)-g(y)}{x-y}=g^{\prime}(t)$ for $t \in(x-y-\delta, x-y+\delta)$ from
MVT $\Longrightarrow|g(x)-g(y)| \leq \alpha|x-y|$
$(\Longrightarrow)|g(x+h)-g(x)| \leq \alpha|h|$

Banach's Fixed Point Theorem

Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

Banach's Fixed Point Theorem

Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

Proof sketch.

Construct sequence $x_{n+1}=T\left(x_{n}\right)$ after taking any x_{0}

Banach's Fixed Point Theorem

Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

Proof sketch.

Construct sequence $x_{n+1}=T\left(x_{n}\right)$ after taking any x_{0}

Corollary (Prior estimate)

$d\left(x_{m}, x\right) \leq \frac{\alpha^{m}}{1-\alpha} d\left(x_{1}, x_{0}\right)$

Banach's Fixed Point Theorem

Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

Proof sketch.

Construct sequence $x_{n+1}=T\left(x_{n}\right)$ after taking any x_{0}

Corollary (Prior estimate)

$d\left(x_{m}, x\right) \leq \frac{\alpha^{m}}{1-\alpha} d\left(x_{1}, x_{0}\right)$

Corollary (Posterior estimate)

$d\left(x_{m}, x\right) \leq \frac{\alpha}{1-\alpha}\left(x_{m}, x_{m-1}\right)$

Banach's Fixed Point Theorem

Theorem

Every contraction map T on a complete metric space (X, d) has a unique fixed point x.

Proof sketch.

Construct sequence $x_{n+1}=T\left(x_{n}\right)$ after taking any x_{0}

Corollary (Prior estimate)

$d\left(x_{m}, x\right) \leq \frac{\alpha^{m}}{1-\alpha} d\left(x_{1}, x_{0}\right)$

Corollary (Posterior estimate)

$$
d\left(x_{m}, x\right) \leq \frac{\alpha}{1-\alpha}\left(x_{m}, x_{m-1}\right)
$$

Fact

Invalid if completeness or contraction condition is taken

Newton's method

- Newton's method is a contraction in some neighbourhood of solution \hat{x} of a twice continuously differentiable function $f(x)$

Newton's method

- Newton's method is a contraction in some neighbourhood of solution \hat{x} of a twice continuously differentiable function $f(x)$

$$
\begin{aligned}
& \text { Proof. } \\
& g(x)=x+\frac{f(x)}{f^{\prime}(x)} \Longrightarrow g^{\prime}(x)=1=f(x) f^{\prime \prime}(x) /\left[f^{\prime}(x)\right]^{2} \Longrightarrow \\
& \lim _{x \rightarrow \hat{x}} g^{\prime}(x)=0 \Longrightarrow\left|g^{\prime}(x)\right|<\epsilon
\end{aligned}
$$

Newton's method

- Newton's method is a contraction in some neighbourhood of solution \hat{x} of a twice continuously differentiable function $f(x)$

$$
\begin{aligned}
& \text { Proof. } \\
& g(x)=x+\frac{f(x)}{f^{\prime}(x)} \Longrightarrow g^{\prime}(x)=1=f(x) f^{\prime \prime}(x) /\left[f^{\prime}(x)\right]^{2} \Longrightarrow \\
& \lim _{x \rightarrow \hat{x}} g^{\prime}(x)=0 \Longrightarrow\left|g^{\prime}(x)\right|<\epsilon
\end{aligned}
$$

$$
\text { - } x_{n+1}=g\left(x_{n}\right)=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Application of Banach's Theorem

Finding roots of equations

- What if we need to find $x=\sqrt[r]{c}$?

Application of Banach's Theorem

Finding roots of equations

- What if we need to find $x=\sqrt[r]{c}$?
- Take $f(x)=x^{r}-c=0$.

Application of Banach's Theorem

Finding roots of equations

- What if we need to find $x=\sqrt[r]{c}$?
- Take $f(x)=x^{r}-c=0$.
- Apply Newton's formula to get $x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=g\left(x_{n}\right)=\frac{1}{r}\left(x_{n}+\frac{c}{x_{n}}\right)$.

Application of Banach's Theorem

Finding roots of equations

- What if we need to find $x=\sqrt[r]{c}$?
- Take $f(x)=x^{r}-c=0$.
- Apply Newton's formula to get $x_{n+1}=x_{n}+\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=g\left(x_{n}\right)=\frac{1}{r}\left(x_{n}+\frac{c}{x_{n}}\right)$.
- This map is contraction with $\alpha=|1 / r(1-c / x y)|$

Application of Banach's Theorem

Finding roots of equations

Point

Application of Banach's Theorem

Finding solution for system of equations

- $\mathbf{x}=A \mathbf{x}+\mathbf{b}$ for $x, b \in \mathbb{R}^{n}$ and $A \in M_{n}(\mathbb{R})$

Application of Banach's Theorem

Finding solution for system of equations

- $\mathbf{x}=A \mathbf{x}+\mathbf{b}$ for $x, b \in \mathbb{R}^{n}$ and $A \in M_{n}(\mathbb{R})$
- Convert to $T(x)=A \mathbf{x}+\mathbf{b}$ which is contractive when
$0<\left|\sum_{k=1}^{n} a_{j k}\right|<1$ for $j=1,2,3 \ldots, n$

Application of Banach's Theorem

Finding solution for system of equations

- $\mathbf{x}=A \mathbf{x}+\mathbf{b}$ for $x, b \in \mathbb{R}^{n}$ and $A \in M_{n}(\mathbb{R})$
- Convert to $T(x)=A \mathbf{x}+\mathbf{b}$ which is contractive when
$0<\left|\sum_{k=1}^{n} a_{j k}\right|<1$ for $j=1,2,3 \ldots, n$
- What about $A \mathbf{x}=\mathbf{b}$? Convert to $D \mathbf{x}=(D-A) \mathbf{x}+b$ and use previous condition

Application of Banach's Theorem

Finding solution for differential equation

```
Theorem (Picard's Theorem)
If \(|f(t, x)-f(t, y)| \leq \alpha|x-y|\), then \(x^{\prime}(t)=f(t, x(t))\) has a solution
in some interval with initial value \(x\left(t_{0}\right)=x_{0}\)
```


Application of Banach's Theorem

Finding solution for differential equation

$$
\begin{aligned}
& \text { Theorem (Picard's Theorem) } \\
& \text { If }|f(t, x)-f(t, y)| \leq \alpha|x-y|, \text { then } x^{\prime}(t)=f(t, x(t)) \text { has a solution } \\
& \text { in some interval with initial value } x\left(t_{0}\right)=x_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Proof sketch. } \\
& \text { Turn IVP into } T(x(t))=x_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau)) d \tau
\end{aligned}
$$

Application of Banach's Theorem

Finding solution for differential equation

Theorem (Picard's Theorem)

If $|f(t, x)-f(t, y)| \leq \alpha|x-y|$, then $x^{\prime}(t)=f(t, x(t))$ has a solution in some interval with initial value $x\left(t_{0}\right)=x_{0}$

Proof sketch.

Turn IVP into $T(x(t))=x_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau)) d \tau$

- This is also an integral equation

Application of Banach's Theorem

Finding solution for differential equation

Theorem (Picard's Theorem)

If $|f(t, x)-f(t, y)| \leq \alpha|x-y|$, then $x^{\prime}(t)=f(t, x(t))$ has a solution in some interval with initial value $x\left(t_{0}\right)=x_{0}$

Proof sketch.

Turn IVP into $T(x(t))=x_{0}+\int_{t_{0}}^{t} f(\tau, x(\tau)) d \tau$

- This is also an integral equation

Theorem

If f_{x} exists, then $|f(t, x)-f(t, y)| \leq \alpha|x-y|$

From Metric Spaces to Topological Spaces

Theorem
A continuous image of a compact set $M \subseteq \mathbb{R}^{n}$ is compact

From Metric Spaces to Topological Spaces

Theorem
A continuous image of a compact set $M \subseteq \mathbb{R}^{n}$ is compact

Abstract

Proof. If $x_{n} \longrightarrow x \in M$ and $x_{n_{k}} \longrightarrow x$, then $f\left(x_{n_{k}}\right) \longrightarrow f(x)$

From Metric Spaces to Topological Spaces

Theorem
 A continuous image of a compact set $M \subseteq \mathbb{R}^{n}$ is compact

Proof.

If $x_{n} \longrightarrow x \in M$ and $x_{n_{k}} \longrightarrow x$, then $f\left(x_{n_{k}}\right) \longrightarrow f(x)$

Corollary

The image $f(U) \subseteq \mathbb{R}^{n}$ for injective f is open for open $U \subseteq \mathbb{R}^{n}$

From Metric Spaces to Topological Spaces

Theorem

A continuous image of a compact set $M \subseteq \mathbb{R}^{n}$ is compact
Proof.
If $x_{n} \longrightarrow x \in M$ and $x_{n_{k}} \longrightarrow x$, then $f\left(x_{n_{k}}\right) \longrightarrow f(x)$

Corollary

The image $f(U) \subseteq \mathbb{R}^{n}$ for injective f is open for open $U \subseteq \mathbb{R}^{n}$

Corollary

U and $f(U)$ are homeomorphic

From Metric Spaces to Topological Spaces

Theorem

A continuous image of a compact set $M \subseteq \mathbb{R}^{n}$ is compact
Proof.
If $x_{n} \longrightarrow x \in M$ and $x_{n_{k}} \longrightarrow x$, then $f\left(x_{n_{k}}\right) \longrightarrow f(x)$

Corollary

The image $f(U) \subseteq \mathbb{R}^{n}$ for injective f is open for open $U \subseteq \mathbb{R}^{n}$

Corollary

U and $f(U)$ are homeomorphic

Corollary

A continuous injective map $f: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ does not exist for $n \neq m$

From Metric Spaces to Topological Spaces

Definition

A continuous map f from a topological space T to a subspace S is called a retraction if $f(x)=x \forall x \in S$

Example

The retract of $[0,1]$ is not $(0,1)$

From Metric Spaces to Topological Spaces

Definition
 A continuous map f from a topological space T to a subspace S is called a retraction if $f(x)=x \forall x \in S$

Example

The retract of $[0,1]$ is not $(0,1)$

Theorem (Brouwer's Fixed Point Theorem)

Every continuous mapping $f: \overline{B_{n}(0,1)} \longrightarrow \overline{B_{n}(0,1)}$ has a fixed point.

From Metric Spaces to Topological Spaces

Definition

A continuous map f from a topological space T to a subspace S is called a retraction if $f(x)=x \forall x \in S$

Example

The retract of $[0,1]$ is not $(0,1)$

Theorem (Brouwer's Fixed Point Theorem)

Every continuous mapping $f: \overline{B_{n}(0,1)} \longrightarrow \overline{B_{n}(0,1)}$ has a fixed point.

Proof.

For $n=1, f(-1) \geq(-1)$ and $f(1) \leq 1$ so that $g(x)=x-f(x)$ has a solution $g(c)=0$ for $c \in[-1,1]$. For arbitrary n, take $g(x)=\alpha(x) x+(1-\alpha(x)) f(x)$ with $g(x) \in S_{n}(0,1)$, which is well defined if f does not have a fixed point but g cannot exist

From Metric Spaces to Topological Spaces

Examples
 $f:(-1,1) \longrightarrow(-1,1)$ for $f(x)=(x+1) / 2$

From Metric Spaces to Topological Spaces

Examples

$f:(-1,1) \longrightarrow(-1,1)$ for $f(x)=(x+1) / 2$

Examples

$f: B_{2}(0,1) \longrightarrow \mathbb{R}^{2}$ such that $f(x, y)=\left(x+\sqrt{1-y^{2}}, y\right)$

From Metric Spaces to Topological Spaces

Examples

$f:(-1,1) \longrightarrow(-1,1)$ for $f(x)=(x+1) / 2$

Examples

$f: B_{2}(0,1) \longrightarrow \mathbb{R}^{2}$ such that $f(x, y)=\left(x+\sqrt{1-y^{2}}, y\right)$

Theorem

For $X, Y \subset \mathbb{R}^{n}, g: X \longrightarrow Y$ homemorphism, then X has a fixed point $\Longrightarrow Y$ has a fixed point

From Metric Spaces to Topological Spaces

Examples

$f:(-1,1) \longrightarrow(-1,1)$ for $f(x)=(x+1) / 2$

Examples

$f: B_{2}(0,1) \longrightarrow \mathbb{R}^{2}$ such that $f(x, y)=\left(x+\sqrt{1-y^{2}}, y\right)$

Theorem

For $X, Y \subset \mathbb{R}^{n}, g: X \longrightarrow Y$ homemorphism, then X has a fixed point $\Longrightarrow Y$ has a fixed point

Proof.

For $h: Y \longrightarrow Y$, if $f: X \longrightarrow X$, then $f=g^{-1} \circ h \circ g \Longrightarrow h$ has a fixed point

From Metric Spaces to Topological Spaces

Theorem

\Longleftrightarrow No indefinitely differentiable retraction exists from $\overline{B_{n}(0,1)}$ to $S_{n}(0,1)$

From Metric Spaces to Topological Spaces

Theorem

\Longleftrightarrow No indefinitely differentiable retraction exists from $\overline{B_{n}(0,1)}$ to $S_{n}(0,1)$

Proof.

for $n=1, f:[-1,1] \longrightarrow\{-1,1\}$ is not differentiable If $r: \overline{B_{n}(0,1)} \longrightarrow S_{n}(0,1)$ is a differentiable retraction, define $r_{1}: \overline{B_{n}(0,1)} \longrightarrow \overline{B_{n}(0,1)}$ such that $r_{1}(x)=-r(x)$. Then, $r_{1}(x)$ has a fixed point by Brouwer's theorem but $r_{1}(x)=x=-r(x)$ is then not a retraction

From Metric Spaces to Topological Spaces

Theorem

\Longleftrightarrow No indefinitely differentiable retraction exists from $\overline{B_{n}(0,1)}$ to $S_{n}(0,1)$

Proof.

for $n=1, f:[-1,1] \longrightarrow\{-1,1\}$ is not differentiable
If $r: \overline{B_{n}(0,1)} \longrightarrow S_{n}(0,1)$ is a differentiable retraction, define $r_{1}: \overline{B_{n}(0,1)} \longrightarrow \overline{B_{n}(0,1)}$ such that $r_{1}(x)=-r(x)$. Then, $r_{1}(x)$ has a fixed point by Brouwer's theorem but $r_{1}(x)=x=-r(x)$ is then not a retraction

$$
\begin{aligned}
& \text { Example (Failure) } \\
& I^{2} \ni x=\left(x_{1}, x_{2}, \ldots\right) \longmapsto\left(1+\|x\|, x_{1}, x_{2}, \ldots\right)
\end{aligned}
$$

Going high up the dimension ladder

Theorem (Schauder's fixed point theorem)

A continuous self-map on a compact, convex set in a Banach space has a fixed point

