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What is a �xed point?

For any function f , a �xed point is a point x such that f (x) = x

For instance, x = �1 in y = 3x + 2
A �xed point may not exist, may exist but may not be unique

Used to �nd roots of an equation as follows: write out f (x) in the
form g (x) = x or by �nding �xed points of g (x) = x + f (x)
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Graphical Illustrations

f (x) = x2 + 2x + 1
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Graphical Illustrations

f (x) = x2 � 2x + 1
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De�nitions

Let (X , d) be a metric space and let f : X �! X be a function

De�nitions

f is Lipschitzian if 9 Lipschitzian constant α such that

d (f (x) , f (y)) � αd (x , y)

f is non-expansive if α = 1

f is a contractive if d (f (x) , f (y)) < d (x , y)
f is a contraction if α 2 (0, 1)
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Comparison of de�nitions

f (x) = 2x is Lipschitzian for α = 2 under d (x , y) = jx � y j but not
non-expansive

f (x) = x is nonexpansive but not contractive since
d (f (x) , f (y)) = d (x , y)

For X = (1,∞), f (x) = x + 1/x is contractive but not a contraction
since d (f (x) , f (y)) =
j(x � y) + (1/x � 1/y)j
= jx � y j j1� 1/xy j < jx � y j
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Preliminary theorems

Theorem
Every Lipschitz mapping is uniformly cts.

Proof.
Let ε > 0. Choose δ = ε/α. Then,
d (x , y) < δ =) d (f (x) , f (y)) � αd (x , y) < ε

Theorem
For X = R and usual metric d, g : R �! R is a
contraction() jg 0 (x)j � α < 1 for continuous g.

Proof.

((= ) g (x )�g (y )x�y = g 0 (t) for t 2 (x � y � δ, x � y + δ) from
MVT =) jg (x)� g (y)j � α jx � y j
( =) ) jg (x + h)� g (x)j � α jhj
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Banach�s Fixed Point Theorem

Theorem
Every contraction map T on a complete metric space (X , d) has a unique
�xed point x.

Proof sketch.
Construct sequence xn+1 = T (xn) after taking any x0

Corollary (Prior estimate)

d (xm , x) � αm

1�αd (x1, x0)

Corollary (Posterior estimate)

d (xm , x) � α
1�α (xm , xm�1)

Fact
Invalid if completeness or contraction condition is taken

Abdullah (CIIT) Theory and Applications of Fixed Points April 17, 2014 8 / 18



Banach�s Fixed Point Theorem

Theorem
Every contraction map T on a complete metric space (X , d) has a unique
�xed point x.

Proof sketch.
Construct sequence xn+1 = T (xn) after taking any x0

Corollary (Prior estimate)

d (xm , x) � αm

1�αd (x1, x0)

Corollary (Posterior estimate)

d (xm , x) � α
1�α (xm , xm�1)

Fact
Invalid if completeness or contraction condition is taken

Abdullah (CIIT) Theory and Applications of Fixed Points April 17, 2014 8 / 18



Banach�s Fixed Point Theorem

Theorem
Every contraction map T on a complete metric space (X , d) has a unique
�xed point x.

Proof sketch.
Construct sequence xn+1 = T (xn) after taking any x0

Corollary (Prior estimate)

d (xm , x) � αm

1�αd (x1, x0)

Corollary (Posterior estimate)

d (xm , x) � α
1�α (xm , xm�1)

Fact
Invalid if completeness or contraction condition is taken

Abdullah (CIIT) Theory and Applications of Fixed Points April 17, 2014 8 / 18



Banach�s Fixed Point Theorem

Theorem
Every contraction map T on a complete metric space (X , d) has a unique
�xed point x.

Proof sketch.
Construct sequence xn+1 = T (xn) after taking any x0

Corollary (Prior estimate)

d (xm , x) � αm

1�αd (x1, x0)

Corollary (Posterior estimate)

d (xm , x) � α
1�α (xm , xm�1)

Fact
Invalid if completeness or contraction condition is taken

Abdullah (CIIT) Theory and Applications of Fixed Points April 17, 2014 8 / 18



Banach�s Fixed Point Theorem

Theorem
Every contraction map T on a complete metric space (X , d) has a unique
�xed point x.

Proof sketch.
Construct sequence xn+1 = T (xn) after taking any x0

Corollary (Prior estimate)

d (xm , x) � αm

1�αd (x1, x0)

Corollary (Posterior estimate)

d (xm , x) � α
1�α (xm , xm�1)

Fact
Invalid if completeness or contraction condition is taken

Abdullah (CIIT) Theory and Applications of Fixed Points April 17, 2014 8 / 18



Newton�s method

Newton�s method is a contraction in some neighbourhood of solution
x̂ of a twice continuously di¤erentiable function f (x)

Proof.

g (x) = x + f (x )
f 0(x ) =) g 0 (x) = 1 = f (x) f 00 (x) / [f 0 (x)]2 =)

lim
x!x̂

g 0 (x) = 0 =) jg 0 (x)j < ε

xn+1 = g (xn) = xn +
f (xn)
f 0(xn)
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Application of Banach�s Theorem
Finding roots of equations

What if we need to �nd x = r
p
c?

Take f (x) = x r � c = 0.
Apply Newton�s formula to get
xn+1 = xn +

f (xn)
f 0(xn)

= g (xn) = 1
r

�
xn + c

xn

�
.

This map is contraction with α = j1/r (1� c/xy)j
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Application of Banach�s Theorem
Finding roots of equations

Point

3.png

Note that the lesser the α, the better the convergence.Abdullah (CIIT) Theory and Applications of Fixed Points April 17, 2014 11 / 18



Application of Banach�s Theorem
Finding solution for system of equations

x = Ax+ b for x , b 2 Rn and A 2 Mn (R)

Convert to T (x) = Ax+ b which is contractive when

0 <

����� n∑k=1ajk
����� < 1 for j = 1, 2, 3..., n

What about Ax = b? Convert to Dx = (D � A) x+ b and use
previous condition
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Application of Banach�s Theorem
Finding solution for di¤erential equation

Theorem (Picard�s Theorem)

If jf (t, x)� f (t, y)j � α jx � y j, then x 0 (t) = f (t, x (t)) has a solution
in some interval with initial value x (t0) = x0

Proof sketch.

Turn IVP into T (x (t)) = x0 +
tR
t0
f (τ, x (τ)) dτ

This is also an integral equation

Theorem
If fx exists, then jf (t, x)� f (t, y)j � α jx � y j
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From Metric Spaces to Topological Spaces

Theorem
A continuous image of a compact set M � Rn is compact

Proof.
If xn �! x 2 M and xnk �! x , then f (xnk ) �! f (x)

Corollary

The image f (U) � Rn for injective f is open for open U � Rn

Corollary

U and f (U) are homeomorphic

Corollary
A continuous injective map f : Rn �! Rm does not exist for n 6= m
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From Metric Spaces to Topological Spaces

De�nition
A continuous map f from a topological space T to a subspace S is called
a retraction if f (x) = x 8x 2 S

Example

The retract of [0, 1] is not (0, 1)

Theorem (Brouwer�s Fixed Point Theorem)

Every continuous mapping f : Bn (0, 1) �! Bn (0, 1) has a �xed point.

Proof.
For n = 1, f (�1) � (�1) and f (1) � 1 so that g (x) = x � f (x) has a
solution g (c) = 0 for c 2 [�1, 1]. For arbitrary n, take
g (x) = α (x) x + (1� α (x)) f (x) with g (x) 2 Sn (0, 1), which is well
de�ned if f does not have a �xed point but g cannot exist
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From Metric Spaces to Topological Spaces

Examples

f : (�1, 1) �! (�1, 1) for f (x) = (x + 1) /2

Examples

f : B2 (0, 1) �! R2 such that f (x , y) =
�
x +

p
1� y2, y

�
Theorem
For X ,Y � Rn, g : X �! Y homemorphism, then X has a �xed point
=) Y has a �xed point

Proof.
For h : Y �! Y , if f : X �! X , then f = g�1 � h � g =) h has a �xed
point
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From Metric Spaces to Topological Spaces

Theorem

() No inde�nitely di¤erentiable retraction exists from Bn (0, 1) to
Sn (0, 1)

Proof.
for n = 1, f : [�1, 1] �! f�1, 1g is not di¤erentiable
If r : Bn (0, 1) �! Sn (0, 1) is a di¤erentiable retraction, de�ne
r1 : Bn (0, 1) �! Bn (0, 1) such that r1 (x) = �r (x). Then, r1 (x) has a
�xed point by Brouwer�s theorem but r1 (x) = x = �r (x) is then not a
retraction

Example (Failure)

l2 3 x = (x1, x2, ...) 7�! (1+ kxk , x1, x2, ...)
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Going high up the dimension ladder

Theorem (Schauder�s �xed point theorem)
A continuous self-map on a compact, convex set in a Banach space has a
�xed point
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